7+3x^2=51+x

Simple and best practice solution for 7+3x^2=51+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7+3x^2=51+x equation:



7+3x^2=51+x
We move all terms to the left:
7+3x^2-(51+x)=0
We add all the numbers together, and all the variables
3x^2-(x+51)+7=0
We get rid of parentheses
3x^2-x-51+7=0
We add all the numbers together, and all the variables
3x^2-1x-44=0
a = 3; b = -1; c = -44;
Δ = b2-4ac
Δ = -12-4·3·(-44)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-23}{2*3}=\frac{-22}{6} =-3+2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+23}{2*3}=\frac{24}{6} =4 $

See similar equations:

| -2=5(x-3)+8x | | 22=4(x+2)+3x | | 2+7(2x-4)+2x=96 | | (4x-17)+65=180 | | 51x+24=177 | | (9-10)+(y-20)=180 | | 30+5x+175=180 | | 35=y+4y | | 4^3x-8=16^x | | 50a^2-8=0 | | 6=8u-6u | | 2v+2=21 | | 3.2=15.7-5u | | d=13=55 | | 24z-2=29z-30 | | .4x-8=9-0.6 | | 2s+3=s+43 | | z+15=79 | | 2p-45=p+43 | | 2p-73=p+2 | | 2.5x+100=699 | | u+2=37 | | 2p-11=p+48 | | d+41=76 | | t-26=5 | | 2x-39=x+24 | | 2c-9=c+39 | | r+21=90 | | 66+3s=6s-14 | | 43+3s+23=6s-14 | | 13x-9x+20=20+3x+10 | | 7x-9=15+5x=0 |

Equations solver categories